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Abstract

In the last few years blind deconvolution techniques proved to be useful in order to extract impulsive patterns
related to bearing fault from noisy vibration signals. Recently, a novel blind deconvolution method based on
the generalized Rayleigh quotient has been proposed and an iterative algorithm related to the maximization
of the cyclostationarity of the source has been defined. This paper presents a new condition indicator that
exploit the Fourier-Bessel series expansion for the computation of a new cyclostationarity index that drives the
maximization problem for the extraction of the excitation source. The main target of this work is to compare
the results obtained through the exploitation of the Fourier-Bessel transform with respect to the classic Fourier
transform in term of lower number of cyclic frequencies required for the algorithm. The comparison between
the application of the two different methods involves both simulated and real signal taking into account a
bearing fault. The results prove the capability of the new indicator to extract the impulsive source without the
need of a set of cyclic frequencies but only with the first one, with a strong reduction of the computational time.
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1 Introduction

Nowadays, bearing fault detection and identification play a fundamental role in the diagnostics of rotating
machines being this component one of the most critical in mechanical systems. However, the detection of
bearing faults, particularly in the first stage of the damaging process, may be challenging due to the fact that
the impulsive pattern related to the fault is very weak and consequently masked by the background noise and
other interference. For this purpose, blind deconvolution (BD) techniques proved to be able to extract the
characteristic impulsive pattern of a faulty bearing direct from a noisy observation, under the hypothesis of
linear time-invariant system.

The first BD method, called Minimum Entropy Deconvolution (MED) [1], exploits an iterative algorithm
in order to extract the impulsive source through the maximization of the kurtosis directly from a noisy vibration
signal convolved with an unknown impulse response function. Over the years, the MED algorithm has been
exploited for machine diagnosis by many authors both for tooth faults [2, 3] and bearing faults [4] in combina-
tion with other signal processing techniques. However, from the machine diagnosis point of view kurtosis can
not be considered a a useful indicator. In fact, this statistics is sensitive to signal with a single peak rather than
to signal peakedness according to a given periodicity, e.g. represented by a train of impulses.

In order to overcome this problem and exploit the BD for the fault detection in rotating machines, McDonald
at al. [5] proposed a new BD method based on a criterion called correlated kurtosis that is sensitive to signal
composed by a train of periodic peaks. This algorithm, called Maximum Correlated Kurtosis Deconvolution
(MCKD), is based on an iterative process that aims to estimate the source having the maximum correlated
kurtosis.

In the same direction, McDonald and Zhao [6] proposed a new BD method called Multipoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA). This direct algorithm promotes the estimation of a
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pattern of periodic impulses by considering a target vector t, defined as a train of equispaced impulses. The
main issue of MOMEDA is related to the definition of t that allows the extraction of periodic impulses.

Over the years, cyclostationarity proved to be effective for machine diagnosis. In particular, several works
[7, 8] prove that the vibration signal related to a bearing fault is not strictly periodic due to a random ”jitter”
around the fault period, but it can be seen as a second order cyclostationary signal. The correlated kurtosis
can be seen as a cyclostationary criterion being it related to the autocorrelation function of the instantaneous
power of the signal [9]. However, it has been defined empirically, without an explicit formulation regarding it
cyclostationary nature, thus there is the need to define a pure cyclostationary criterion.

Recently, in this direction, Buzzoni et al. [10] proposed a new BD method based on the maximization of
the cyclostationarity of the researched signal through an iterative algorithm that solves an eigenvalue problem
starting from a generalized Rayleigh quotient. This algorithm aims to extract the source related to the maximum
value of the Indicator of Ciclostationarity (ICS). This indicator, proposed for the first time by Raad et al. [11],
exploits the Fourier transform in order to extract the hidden periodicity inside the acquired signal. However, the
Fourier series expansion requires an high number of terms for the description of an impulsive pattern. For this
reason, the algorithm needs to take account of a certain number of harmonics of the cyclic frequency related to
the investigated periodicity in order to reach a sufficient reconstruction quality.

The target of this work is the definition of a new BD indicator based on the maximization of the ciclosta-
tionary behavior of the analyzed signal. This indicator exploits the Fourier-Bessel series expansion instead of
the classical Fourier transform. The choice of this particular series expansion is related to the fact that, unlike
the sinusoidal function based Fourier transform, it is based on the Bessel functions that quickly decay according
to a specific law [12, 13]. For this reason, the proposed method requires a set of cyclic frequencies with a lower
number of harmonics, strongly reducing the computational time of the iterative algorithm.

The BD method modified through the exploitation of a new indicator is verified through the analysis of
both simulated signal and a real test case in order to demonstrate its effectiveness for the fault detection and the
condition monitoring of bearings. The comparison between the proposed method and the other methods based
on the ciclostationarity maximization aims to point out the improvement given by the proposed algorithm, in
particular in term of computational time reduction.

2 Overview about blind deconvolution methods through generalized Rayleigh
quotient optimization

The target of BD is the extraction of an input signal, typically related to the excitation given by a fault,
directly from a noisy observation under the hypothesis of linear time invariant system.

The vibration signal, from now called x, can be considered as composed by three different parts: an impul-
sive pattern s0 related to a local fault, a periodic component p and a Gaussian background noise n, all convolved
with their respective Impulse Response Function (IRF), viz:

x = s0 ∗gs +p∗gp +n∗gn (1)

where gs, gp and gn are the IRFs related to s0, p and n, respectively and * refers to the convolution operation.
BD aims to estimate an inverse filter h (assumed to be a FIR filter) in order to deconvolve the excitation s0

from x minimizing the other contributions, such that:

s = x∗h = (s0 ∗gs +p∗gp +n∗gn)∗h≈ s0 (2)

In the first part of eq. 2 the convolution can be expressed for discrete signals in matrix form, as follow:

s = Xh (3a) s[0]
...

s[L−1]

=

x[N−1] . . . x[0]
...

. . .
...

x[L−1] . . . x[L−N−2]


 h[0]

...
h[N−1]

 (3b)

where L and N are the number of samples of s and h, respectively. The main problem is related to the fact
that the IRFs described in eq. 2 are not available. A possible solution can be achieved considering an arbitrary
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criterion based on a priori assumption, e.g. assuming that a statistical property is maximized by the researched
source. Thus, BD aims to recover the source that maximizes a certain statistical property, e.g. kurtosis [1],
correlated kurtosis [5] or multi D-Norm [6], through iterative or direct algorithms.

Although cyclostationarity plays a fundamental role in the diagnostics of rolling element bearings the CY-
CBD method [10] can be considered as the first BD method that exploits the cyclostationary signature of faulty
bearings.

2.1 Blind deconvolution algorithms driven by cyclostationarity maximization based on
generalized Rayleigh quotient

Recently, the method proposed in Ref. [10] demonstrated that the generalized Rayleigh quotient can be
exploited in order to define a new optimization problem. Starting from this statement a new BD method based
on the cyclostationarity maximization has been defined.

A generical process can be defined as cyclostationary if its statistical properties exhibit a periodic behaviour.
It has been demonstrated by several authors [7, 8] that the vibration signature related to a faulty bearing shows a
cyclostationary behavior, thus this property became pivotal for bearing fault detection and identification. In this
scenario, the frequency related to the periodic behavior of any statistic of the process is called cyclic frequency
and, for discrete signal, can be expressed as follow:

α =
k
T

(4)

where k is the sample index and T the cyclic period, e.g. the characteristic period of a bearing fault. The BD
algorithm descried in this section, called CYCBD, is based on the maximization of the second-order ICS that
describes the presence of periodic fluctuations of the energy flow of the signal.

First of all, it is necessary to remember the definition of second-order ICS:

ICS2 =

∑
k>0
|ck

s |2

|c0
s |2

(5)

with

ck
s =

1
L−N +1

L−1

∑
n=N−1

|s[n]|2e− j2π
k
T n (6a)

c0
s =

||s||2

L−N +1
(6b)

or, in matrix form:

ck
s =

EH |s|2

L−N +1
(7a)

c0
s =

sHs
L−N +1

(7b)

where

|s|2 = [|s[N−1]|2, . . . , |s[L−1]|2]T (8a)

E =

e− j2π
1
T (N−1) . . . e− j2π

K
T (N−1)

...
. . .

...
e− j2π

1
T (L−1) . . . e− j2π

K
T (L−1)

 (8b)

Now it is possible to rewrite eq. 5 by substituting eq. 7a and 7b as:

ICS2 =
|s|2HEEH |s|2

|sHs|2
(9)
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Finally, ICS2 can be rewritten by substituting eq. 3a into eq. 9, viz:

ICS2 =
hHXHWXh
hHXHXh

=
hHRXWX h
hHRXX h

(10)

where RXWX and RXX are the weighted correlation matrix and the correlation matrix, respectively, and W is
the weighting matrix, expressed as:

W = diag
( EEH |s|2

(L−N +1)sHs

)
(L−N +1) =


. . . 0

EEH |s|2
(L−N+1)

0
. . .

 (L−N +1)
L−1
∑

n=N−1
s[n]2

(11)

It should be noticed that eq. 10 is a generalized Rayleigh quotient. It has been demonstrated [10] that the
maximization of the ICS2 in eq. 10 with respect to the filter coefficients h is equivalent to the eigenvector
related to the maximum eigenvalue λ of the following generalized eigenvalue problem:

RXWX h = RXX hλ (12)

thus, the maximum value of λ correspond to the maximum value of ICS2.
The maximization of ICS2 and the extraction of the associated filter h is reached through an iterative pro-

cess. The iteration starts with an initialization of the inverse filter h in order to compute the weighting matrix
W and solve the eigenvalue problem described in eq. 12, obtaining the filter h related to the maximum value of
λ . The iterative process restarts from the evaluation of W and goes on until convergence. A suitable solution
for the computation of a guess of h is to estimate the filter coefficient through an auto-regressive (AR) model
filter, e.g. by means of the Yule-Walker equations, according to Ref. [10]. This model permits to attenuate all
the components related to deterministic sources in the signal spectra thus it is possible to obtain a flat spectral
density, typical of a impulsive patterns.

Once the iterative process is ended, the maximum value of ICS2 is available and the source obtained by
substituting the related value of h into eq. 3a represents the final deconvolved source.

3 Fourier-Bessel series expansion based blind deconvolution method

3.1 Fourier-Bessel series expansion

Let us consider a generic discrete signal x(n); the Fourier-Bessel series expansion can be written in the
discrete form as follows:

x(n) =
L

∑
i=1

CiJ0

(
βin
L

)
,n = 0,1, ...,L−1 (13)

where L is the length of x, J0 is the zero-order Bessel function and Ci are the Fourier-Bessel series coefficients,
defined as:

Ci =
2

L2[J1(βi)]2

L−1

∑
n=0

nx(n)J0

(
βin
L

)
(14)

where J1 is the first order Bessel function and βi are the positive roots of J0 = 0.
According to Schroeder [14], the positive roots of the zero order Bessel function are related to the frequency

domain by the following:

βi ≈
2π fiL

fs
(15)

where fs is the sampling frequency of x(n).
It is possible to compare the Fourier-Bessel coefficients Ci with the Fourier coefficients for the description

of the signal x(n). However, the Bessel functions decay within the range defined by L according to eq. 13,
instead of the sinusoidal functions on which is based the Fourier series. For this reason, the Fourier-Bessel
transform requires a lower number of coefficients, with respect to the classic Fourier transform, in order to
obtain high quality in the reconstruction of the signal.

This work aims to exploit this characteristic of the Fourier-Bessel transform in order to define a new BD
criterion that permits the reduction of the computational time of the iterative algorithm due to the lower number
of cyclic frequency harmonics required for the analysis.

4



3.2 Proposed method

The CYCBD algorithm can be reformulated as follows. First of all, let us remember the second order
indicator of ciclostationarity defined in eq. 5. Unlike the formula described in eq. 6, the numerator of the ICS2
can be rewritten exploiting the Fourier-Bessel series expansion described in eq. 14 as follows:

ck
F =

2
(L−N +1)2[J1(βk)]2

L−1

∑
n=N−1

n|s(n)|2J0

(
βkn

L−N +1

)
(16)

where the roots of the zero-order Bessel function can be expressed as:

βk =
2π

k
Ts
(L−N +1)

fs
(17)

where the term k/Ts represents the cyclic frequency, according to eq. 4.
Eq. 16 can be expressed in matrix form as follows:

ck
F =

2
(L−N +1)2

JH
0n
|s|2

J1JH
1

(18)

where

|s|2 = [|s[N−1]|2, . . . , |s[L−1]|2]T (19a)

J0n =


J0

(
β1(N−1)
L−N+1

)
(N−1) . . . J0

(
βK(N−1)
L−N+1

)
(N−1)

...
. . .

...

J0

(
β1(L−1)
L−N+1

)
(L−1) . . . J0

(
βK(L−1)
L−N+1

)
(L−1)

 (19b)

J1 = [J1(β1) . . .J1(βk) . . .J1(βK)] (19c)

Starting from eq. 7b and eq. 18, eq. 5 can be rewritten as:

ICS2F =
4

(L−N +1)2|J1JH
1 |2
|s|2HJ0nJH

0n
|s|2

|sHs|2
(20)

Analogously to the CYCBD method, it is possible to note that all the periodic components of |s|2 are comprising
into the following signal:

P[s] =
4

(L−N +1)2 ∑
k>0

Jk
0n
(Jk

0n
|s|2)

[J1(βk)]2
=

4
(L−N +1)2

J0nJH
0n
|s|2

|J1JH
1 |2

(21)

Substituting eq. 3a and eq. 21 into eq. 20 it is possible to write the ICS2 as a generalized Rayleigh quotient:

ICS2F =
hHXHWXh
hHXHXh

=
hHRXWX h
hHRXX h

(22)

where the weighting matrix can be expressed as:

W = diag
(P[|s|2]

sHs

)
(L−N +1) =


. . . 0

P[|s|2]

0
. . .

 1
L−1
∑

n=N−1
s[n]2

(23)

Eq. 22 is the base of the proposed BD method, called Fourier-Bessel Blind Deconvolution (FBBD). The
maximum value of the proposed criterion can be found by solving the same iterative process based on the
maximization of the Rayleigh quotient described in section 2.1.
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4 Application to simulated signal

The FBBD method proposed in the previous section has been validated taking into account a simulated
signal that reproduces a characteristic cyclostationary signal. During the validation the method is compared
with the CYCBD method described in section 2 in order to demonstrate the improvement given by the Fourier-
Bessel transform, specially in term of lower computational time due to the lower number of cyclic frequencies
required by the algorithm.

4.1 Simulated signal

The simulated signal used for the validation of the proposed method has been created according to eq. 1,
neglecting the periodic pattern p as follows:

x = s0 ∗gs +n∗gn (24)

where the IRFs gs and gn have been defined according to the model of the response of a damped single degree
of freedom (SDOF) system to a unit impulse in the time domain. For continuous signal, this IRF can be defined
in term of displacement as:

xSDOF = Ae−ζ ωntsin(ωdt) (25)

where A is the response amplitude, ζ is the damping coefficient, ωn is the resonance frequency and ωd is given
by the following:

ωd = ωn
√

1−ζ 2 (26)

Starting from eq. 25 the IRFs can be defined in term of acceleration by taking the second derivative with respect
to the time.

Table 1: Parameters used for the IRFs.
gs gn

A 1.810−10 1.210−10

ζ 0.005 0.045
ωn(rad/s) 18.84 62.83

Figure 1: Simulated signal used for the validation: impulsive pattern with Gaussian distributed amplitudes (a),
impulsive pattern convolved with its IRF (b) and overall signal (c).
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The cyclostationary signal used for the validation is composed by a pattern of periodic impulses (with 250
samples period) with amplitudes distributed according to a Gaussian law and an additive Gaussian background
noise (SNR = -17dB). The IRFs gs and gn are described by the parameters collected in table 1.

Figure 1 depicts the overall simulated signal and the patterns that compose it. It is possible to note that
in the overall signal the periodic impulses are strongly masked by the background noise. For this reason the
extraction of the cyclostationary source may represent a challenging test for the proposed method thus this
validation may permit to demonstrate the effectiveness of the FBBD algorithm.

4.2 Results

The simulated signal has been analyzed through FBBD and CYCBD method in order to highlight the
improvement given by the proposed algorithm, in particular in term of lower number of cyclic frequencies
required. Due to the inability of BD methods to find the real amplitude of the researched pattern, all the sources
obtained from the analysis has been normalized by their respective maximum value.

Figure 2: Comparison between the target source (a) and the patterns estimated through the FBBD method at
increasing number of cyclic frequencies (from b to e).

Figure 2 reports the results obtained through the application of the FBBD method considering an increasing
number of cyclic frequency harmonics, i.e. 1, 10, 30, 50 (from top to bottom). It clearly shows that the FBBD
is able to extract the impulsive pattern with the same period of the target source and with the correct relative
amplitudes. It has to be underlined that the deconvolved source presents a delay with respect the reference
signal, due to the filtering operation inside the BD algorithm. However, this delay does not influence the results
thus it is not corrected in the following analysis.

The main issue pointed out by the comparison between the estimated sources and the target pattern is related
to the sign of the recovered impulses. In fact, it has to be noticed that the FBBD algorithm is not able to recover
the correct sign of the impulses but it extracts a source composed by symmetric peaks. This particular behaviour
do not depend on the number of cyclic frequencies used for the analysis. In fact, comparing the sources in figure
2(c to e) it is possible to see no changing in the reconstructed signal amplitudes with increasing number of cyclic
frequency harmonics. This result agrees with the consideration explained in section 3 about the low number of
term required by the Fourier-Bessel transform for the reconstruction of signal with sufficient quality.

Figure 3 depicts the sources estimated after the application of the CYCBD algorithm at increasing number
of considered cyclic frequency harmonics, i.e. 10, 30, 50, 100 (from b to e). There is a significant difference
between the behaviour of the CYCBD and the FBBD for different number of considered harmonics. For low
number of cyclic frequency harmonics, i.e. 10 as shown in figure 3(b), the estimated source is not able to
reproduce the real sign of the impulses as well as for the FBBD method. However, considering an higher
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Figure 3: Comparison between the target source (a) and the patterns estimated through the CYCBD method at
increasing number of cyclic frequencies (from b to e).

number of cyclic frequency harmonics, i.e. 30, 50 and 100 as shown in figure 3(c-e), the algorithm permits to
extract the correct sign of the peaks, reproducing the target source with higher quality with respect to the FBBD
algorithm.

Moreover, comparing figure 3(b-e) it has to be noticed that the quality of the reconstruction reaches an
acceptable level considering at least 30 cyclic frequency harmonics (figure 3(c)). Further increasing the number
of harmonics (figure 3(d-e)), the deconvolved source does not seem to present any improvement from this point
of view.

Figure 4: Comparison between the target source (a) and the sources estimated through the FBBD method (b)
and the CYCBD method (c).

Figure 4 compares the impulsive patterns recovered using both FBBD and CYCBD. All two methods has
been applied using the minimum number of cyclic frequency harmonics identified by the previous analysis, i.e.
10 and 30 respectively.
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Figure 5: Scheme of the experimental test rig.

The comparison clearly underlines the main difference between the results obtained applying the two meth-
ods, represented by the gap in term of reconstruction of the correct sign of the source. In fact, as already seen
in figure 2 the FBBD extracts a zero mean impulsive pattern, independently from the real sign of the peaks.
However, this issue may be considered irrelevant for diagnostics purposes where the main attention is pointed
out on the frequency of the impulses instead of their amplitudes. On the other hand, the FBBD seems to permit
the identification of the lower amplitude impulses better tha the CYCBD. For examples, comparing figures
4(b-c) it can be seen that the impulses close to 2500 and 4000 samples are clearly identified only by the FBBD,
due to the higher amplitude of the noise in the source deconvolved by the CYCBD that masks these peaks.

These results, combined with the lower number of cyclic frequencies required (70% less), demonstrates the
clear improvement given by the FBBD method for the extraction of hidden ciclostationary pattern directly from
noisy observations such as the characteristic vibration signal related to faulty bearings.

5 Application to real signal

The second part of the experimental application of the proposed method regards the early detection and
identification of a bearing fault during a run-to-failure test.

5.1 Experimental setup

This part of the analysis has been carried out by using the vibration signals contained into a data set provided
by the Center for Intelligent Maintenance Systems of the University of Cincinnati [15]. As shown by the scheme
in figure 5, the test rig is composed by four bearings type Rexnord ZA-2115 mounted on the same shaft. During
the test the rotational speed has been fixed at 2000rpm and a radial load of 27.7kHz has been applied to bearings
2 and 3. The vibration signals have been acquired through two accelerometers model PCB 253B33 mounted
in radial direction. Each bearing has been monitored continuously acquiring 1s of signal each 10min with
a sampling frequency of 20.48kHz. After 7 days the test has been stopped and an outer race fault has been
detected in bearing 1.

5.2 Results

The target of this section is to demonstrate that the proposed criterion is able to monitor the progressive
evolution of the bearing condition during the entire operative life in order to detect the appearance of faults as
early as possible. For this scope, the variation of the maximized BD criterion during the endurance test can be
observed taking account of three characteristic frequencies: the ball pass frequency outer race (BPFO), the ball
pass frequency inner race (BPFI) and the ball spin frequency (BSF).
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Figure 6: Final values of maximized criterion during the endurance test taking account of BPFO (a), BPFI (b)
and BSF (c).

The FBBD method has been applied considering only the fundamental cyclic frequency related to the
bearing fault and a 100 samples length FIR filter. Due to the experimental evidence, the analysis has been
carried out considering only the faulty bearing 1.

Figure 6 collects the values of the maximized criterion calculated on bearing 1 during the endurance test.
The figures depict a constant trend of values in the first stage of the test considering all the characteristic
frequencies. However, in figure 6a it is possible to clearly identify an increasing trend starting after 3.7 days.
This trend is not monotonically increasing but presents a decreasing trend between 5 and 5.5 days due to the
characteristic propagation phenomena of the bearing fault [16].

The identification of the fault appearance can be obtained by designing a statistical threshold starting from
the trend of the maximized values during the test. In this direction the values obtained are compared in figure
6 with a statistical threshold computed according to the Tukey’s method applied on the values estimated in the
first day of test, under the hypothesis that in this time span the system presents healthy condition. It is possible
to observe in figure 6 that, accordingly to the experimental evidence on the physical system, only the trend of
values related to the BPFO crosses the threshold after 3.8 days.

However, some values related to the BPFI and the BSF cross the respective threshold due to the dispersion
of the BD criterion also in the healthy stage. This issue can be overcome by smoothing the values of the
maximized criterion in order to make the data interpretation easier and to permit the identification of the time
instant related to the fault appearance in a clearer way. The smoothed curves shown in figure 6 have been
calculated exploiting the moving average technique implemented by convolving the BD final values series with
a 15 samples length rectangular window. From the observation of the smoothed curves it is possible to note that
only the trend related to the BPFO crosses the threshold and this behaviour confirms what has been detected
experimentally on the studied system.

This application on a real case explains the sensitivity of the proposed BD criterion to the presence of
cyclostationary patterns inside vibrational signals. This characteristic makes the FBBD algorithm suitable for
the online monitoring of the bearing conditions during the overall operative life. A particular attention has to
be pointed out on the number of cyclic frequencies considered; in fact the entire analysis has been carried out
with the only cyclic frequencies α related to the specific fault, without consider any harmonics.

These results agree with the analysis proposed in Ref. [10] where the fault has been identified through the
application of the CYCBD method also considering the harmonics of the cyclic frequency. The results prove
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the effectiveness of the proposed method that is able to identify the fault appearance considering only the first
cyclic frequency , although in this way the reconstruction quality of the estimated source may be not sufficient,
as demonstrates in the previous section.

6 Final remarks

This paper presents a novel BD method based on the maximization of the cyclostationary behaviour of
the signal. The proposed method exploits the Fourier-Bessel series expansion in order to rewrite the Indicator
of Ciclostationarity and define a new BD criterion. The choice of the Fuorier-Bessel transform instead of the
classic Fourier transform is related to the decay of the Bessel functions within the range defined by the length
of the acquired signal. Thus, the impulsive signal can be reconstructed with a lower number of coefficient with
respect to the Fourier transform based on sinusoidal functions.

The proposed algorithm, called FBBD, has been validated by means of both simulated and real signals in
order to demonstrate the improvement given with respect to the other BD method based on cyclostationarity
maximization, called CYCBD, in particular in term of lower computational time.

The application on simulated signal proves the lower number of cyclic frequencies required by the FBBD
algorithm with respect to the CYCBD (70% less) according to the theoretical properties of the two different
transform. The main issue is related to the inability of the FBBD to deconvolve the correct sign of the impulses;
in fact the proposed method extracts an impulsive pattern composed by zero mean impulses, i.e. symmetric
with respect to the zero, with the correct period and relative amplitude between the peaks.

The analysis of a run-to-failure test demonstrates the effectiveness of the proposed method for the continu-
ous monitoring of the bearing conditions, in order to detect the fault appearance and to describe the progressive
damage of the system. The proposed criterion proves to be very sensitive to the appearance of a cyclostationary
source inside the signal, considering only the cyclic frequencies related to the fault, without its harmonics.

All these results demonstrate the clear improvement given by the proposed method that combines the suit-
ability of the cyclostationarity for the description of vibrational signal related to bearing faults with the speed
up of the iterative algorithm obtained through the exploitation of the Fourier-Bessel series expansion for the
definition of the new BD criterion.
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